Model 4TX RS485 PROTOCOL

BAUD	:	9600
START	:	1
DATA	:	8
STOP	:	1
PARITY	:	NONE

I. Main Protocol

Model 4TX	⇔ PC	
ACKNOWLEDGE	< ADDRESS	
DATA[0]	<> <i>COMMAND</i>	
	>	
DATA[n]	>	
ADDRESS	= 1 byte, 0-127 must add 128 to indicate as address	;
ACKNOWLEDGE	= 1 byte, must be equal to 6	
COMMAND	<pre>= 1 byte, valid commands = (0,1,11,12,13,14,15,16,17,18,30)</pre>	
DATA[0]-DATA	[n]= depends on PARAMETER	
n	= number of bytes	

II. DATA[0] - DATA[n] FORMAT

1. IF COMMAND = 0 then DATA[0]..DATA[37] (page 0)

FUNCTION : to get display data during normal operation.

DATA[0] - DATA[5] = pH Value, ASCII FORMAT
Possible reading: '-02.00' - '+16.00','UNDER ','OVER '
DATA[6] - DATA[11] = Temperature Value, ASCII Format
Possible reading: '-010.0' - '+120.0','UNDER ','OVER '
DATA[12] - DATA[17] = Analog Out (mA), ASCII Format
Possible reading: '+03.00' - '+22.00', 'OFF ', 'FROZEN' &
 'ERROR '
 'OFF ' = Analog system is OFF.
 'FROZEN' = Analog output is frozen.

DATA[18] - DATA[23] = ORP Absolute mV Value Possible reading :'-02500'-'+02500','OVER ', 'UNDER ' **DATA[24] - DATA[29]** = ORP Relative mV Value Possible reading :'-06499'-`+06499','OVER `,'UNDER ` DATA[30] = 1 byte, FLAGS, binary coded Bit O = if 1 then RELAY 1 is ON Bit 1 = if 1 then RELAY 2 is ON Bit 2 = if 1 then RELAY 3 is ON Bit 3 = if 1 then RELAY 4 is ON Bit 4 = if 1 then RELAY 5 is ON Bit 5 = if 1 then unit is password locked Bit 6 = Main display ORP unit = if 0 = Relays & mA output FROZEN/OFF = if 1 = Relays & mA output normal = not used Bit 7 DATA[31] = 1 byte, FLAGS, binary coded Bit O = RELAY 1 ACTION : 0=LO, 1=HI Bit 1 = RELAY 2 ACTION : 0=LO, 1=HIBit 2 = RELAY 3 ACTION : 0=LO, 1=HI Bit 3 = RELAY 4 ACTION : 0=LO, 1=HI= Active reading for Relay & mA is pH Bit 4 Bit 5 = Active reading for Relay & mA is ABS mV Bit 6 = Active reading for Relay & mA is REL mV Bit 7 = not used

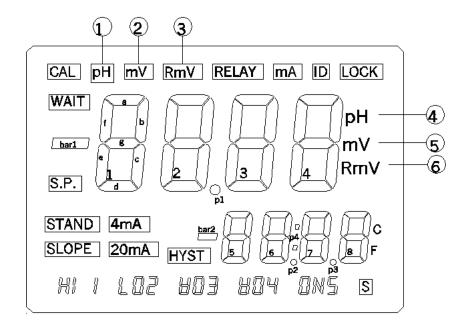


Figure 1.

2. IF COMMAND = 1 then DATA[0]..DATA[15]

FUNCTION : To get the current LCD Display

DATA[0] - DATA[3] DATA[4] - DATA[7]	<pre>= the 4 major(see figure 1) digits. = ASCII FORMAT DATA[0] is the most significant digit. = the 4 minor(see figure 1) digits. = ASCII FORMAT</pre>
DATA[8] - DATA[9]	<pre>DATA[4] is the most significant digit. = reserved</pre>
DATA[10]	= 1 byte, binary coded.
Bit O	= if 1 then RELAY 1 is ON (see DATA[11])
Bit 1	= if 1 then RELAY 2 is ON (see DATA[11])
Bit 2	= if 1 then RELAY 3 is ON (see DATA[11])
Bit 3	= if 1 then RELAY 4 is ON (see DATA[11])
Bit 4	= if 1 then RELAY 5 is ON $(ON5)$
Bit 5	= if 1 then unit is password locked
Bit 6	= if 1 all data are valid.
	Check this flag first before updating the display of your program.
Bit 7	= not used

DATA[11]		= 1 byte, binary coded.
	Bit O	<pre>= if 1 then RELAY 1 is ACTIVE HIGH(HI1), 0=LOW(LO1)</pre>
	Bit 1	<pre>= if 1 then RELAY 2 is ACTIVE HIGH(HI2), 0=LOW(LO2)</pre>
	Bit 2	<pre>= if 1 then RELAY 3 is ACTIVE HIGH(HI3), 0=LOW(LO3)</pre>
	Bit 3	<pre>= if 1 then RELAY 4 is ACTIVE HIGH(HI4), 0=LOW(LO4)</pre>
	Bit 4	
	Bit 5	= reserved
	Bit 6	= reserved
	Bit 7	= not used
DATA[12]		= 1 byte, binary coded.
DATA [12]	Bit O	= 1 byte, binary coded. = annunciator (6) (RmV) (see figure 1)
DATA [12]	Bit 0 Bit 1	= annunciator (6) (RmV) (see figure 1)
DATA [12]		<pre>= annunciator (6) (RmV) (see figure 1) = annunciator (4) (pH) (see figure 1)</pre>
DATA [12]	Bit 1	<pre>= annunciator (6) (RmV) (see figure 1) = annunciator (4) (pH) (see figure 1) = major digit's decimal point (p1) (88.88) (see figure 1) = minor digit's decimal point (p2)</pre>
DATA [12]	Bit 1 Bit 2	<pre>= annunciator (6) (RmV) (see figure 1) = annunciator (4) (pH) (see figure 1) = major digit's decimal point (p1) (88.88) (see figure 1) = minor digit's decimal point (p2) (88.88) (see figure 1) = minor digit's decimal point (p3)</pre>
DATA [12]	Bit 1 Bit 2 Bit 3	<pre>= annunciator (6) (RmV) (see figure 1) = annunciator (4) (pH) (see figure 1) = major digit's decimal point (p1) (88.88) (see figure 1) = minor digit's decimal point (p2) (88.88) (see figure 1) = minor digit's decimal point (p3) (888.8) (see figure 1) = colon at minor digit (88:88)</pre>
DATA [12]	Bit 1 Bit 2 Bit 3 Bit 4	<pre>= annunciator (6) (RmV) (see figure 1) = annunciator (4) (pH) (see figure 1) = major digit's decimal point (p1) (88.88) (see figure 1) = minor digit's decimal point (p2) (88.88) (see figure 1) = minor digit's decimal point (p3) (888.8) (see figure 1) = colon at minor digit (88:88) (see figure 1)</pre>

DATA[13]	Bit O	= 1 byte, binary coded. = major digit's sign bar
		(-88.88) (see figure 1)
	Bit 1	= annunciator 3 (RmV) (see figure 1)
	Bit 2	<pre>= annunciator 1 (pH) (see figure 1)</pre>
	Bit 3	= WAIT annunciator
	Bit 4	= HYST (hysterisis) annunciator
	Bit 5	= 20mA annunciator
	Bit 6	= SLOPE annunciator
	Bit 7	= not used

= 1 byte, binary coded. DATA[14] = RELAY annunciator Bit O Bit 1 = annunciator 2 (mV) (see figure 1) Bit 2 = CAL annunciator Bit 3 = S.P. (set point) annunciator Bit 4 = 4mA annunciator Bit 5 = STAND annunciator Bit 6 = minor sign bar (-8888) annunciator Bit 7 = not used DATA[15] = 1 byte, binary coded. Bit 0 = annunciator 5 (mV) (see figure 1) Bit 1 = LOCK annunciator Bit 2 = mA annunciator Bit 3 = reserved = reserved Bit 4 Bit 5 = ID annunciator Bit 6 = reserved Bit 7 = not used 3. IF COMMAND = 11 to 18 then DATA[0] COMMAND = 11FUNCTION : same as pressing the MODE key on the model 4TX POT keypad. COMMAND = 12FUNCTION : same as pressing the CAL key on the model 4TX POT keypad but bypassing the 2 sec. delay requirement. COMMAND = 13FUNCTION : same as pressing the UP key on the model 4TXPOT Keypad. COMMAND = 14FUNCTION : same as pressing the DOWN key on the model 4TX POT keypad. COMMAND = 15FUNCTION : same as pressing the ENTER key on the model 4TX POT keypad. COMMAND = 16FUNCTION : same as pressing the MODE key for 2 secs. on the Model 4TX POT keypad. COMMAND = 17FUNCTION : same as pressing the WASH key on the model 4TX POT keypad. COMMAND = 18FUNCTION : same as pressing the WASH key for 2 secs. on the Model 4TX POT keypad.

Data format for command 11 to 17: DATA[0] = 1 Byte = if 6 then sent key is executed = if 18 then unit is busy, sent key is not executed 4. IF COMMAND = 30 then DATA[0]..DATA[9] FUNCTION : to get the page no. & model no. DATA[0] = reserved DATA[1]-DATA[9] = ASCII format Some examples: 'EN4TXPOT','EN63080T','CH63080T'..etc. EN= English CH= Chinese 4TXPOT = model

© May 14, 2003